Dyck paths. Dyck paths (see [5]). We let SD denote the set of a...

set of m-Dyck paths and the set of m-ary planar rooted tre

Our approach is to prove a recurrence relation of convolution type, which yields a representation in terms of partial Bell polynomials that simplifies the handling of different colorings. This allows us to recover multiple known formulas for Dyck paths and related lattice paths in an unified manner. Comments: 10 pages. Submitted for publication.Dyck paths with a constrained first return decomposition were introduced in [4] where the authors present both enumerative results using generating functions and a constructive bijection with the set of Motzkin paths. In [5], a similar study has been conducted for Motzkin, 2-colored Motzkin, Schröder and Riordan paths.Introduction Let a and b be relatively prime positive integers and let D a, b be the set of ( a, b) -Dyck paths, lattice paths P from ( 0, 0) to ( b, a) staying above the line …Consider a Dyck path of length 2n: It may dip back down to ground-level somwhere between the beginning and ending of the path, but this must happen after an even number of steps (after an odd number of steps, our elevation will be odd and thus non-zero). So let us count the Dyck paths that rst touch down after 2malization of q,t-Catalan numbers obtained by replacing Dyck paths by Schro¨der paths [7]. Loehr and Warrington [22] and Can and Loehr [6] considered the case where Dyck paths are replaced by lattice paths in a square. The generalized q,t-Fuss-Catalan numbers for finite reflection groups have been investigated by Stump [25].2.1. Combinatorics. A Dyck path is a lattice path in the first quadrant of the xy-plane from the point (0,0) to the point (n,n) with steps +(0,1) and +(1,0) which stays above the line x = y. For a Dyck path D, the cells in the ith row are those unit squares in the xy-plane that are below the path and fully above the line x = y whose NE corner ...[1] The Catalan numbers have the integral representations [2] [3] which immediately yields . This has a simple probabilistic interpretation. Consider a random walk on the integer line, starting at 0. Let -1 be a "trap" state, such that if the walker arrives at -1, it will remain there.A Dyck path is a lattice path in the first quadrant of the x y-plane that starts at the origin and ends on the x-axis and has even length.This is composed of the same number of North-East (X) and South-East (Y) steps.A peak and a valley of a Dyck path are the subpaths X Y and Y X, respectively.A peak is symmetric if the valleys determining the …on Dyck paths. One common statistic for Dyck paths is the number of returns. A return on a t-Dyck path is a non-origin point on the path with ordinate 0. An elevated t-Dyck path is a t-Dyck path with exactly one return. Notice that an elevated t-Dyck path has the form UP1UP2UP3···UP t−1D where each P i is a t-Dyck path. Therefore, we know ...In this paper this will be done only for the enumeration of Dyck paths according to length and various other parameters but the same systematic approach can be applied to Motzkin paths, Schr6der paths, lattice paths in the upper half-plane, various classes of polyominoes, ordered trees, non-crossing par- titions, (the last two types of combinato...Dyck paths and Motzkin paths. For instance, Dyck paths avoiding a triple rise are enumerated by the Motzkin numbers [7]. In this paper, we focus on the distribution and the popularity of patterns of length at most three in constrained Dyck paths defined in [4]. Our method consists in showing how patterns are getting transferred from ...The Catalan numbers on nonnegative integers n are a set of numbers that arise in tree enumeration problems of the type, "In how many ways can a regular n-gon be divided into n-2 triangles if different orientations are counted separately?" (Euler's polygon division problem). The solution is the Catalan number C_(n-2) (Pólya 1956; Dörrie 1965; Honsberger 1973; Borwein and Bailey 2003, pp. 21 ...Counting Dyck paths Catalan numbers The Catalan number is the number of Dyck paths, that is, lattice paths in n n square that never cross the diagonal: Named after Belgian mathematician Eug ene Charles Catalan (1814{1894), probably discovered by Euler. c n = 1 n + 1 2n n = (2n)! n!(n + 1)!: First values: 1;2;5;14;42;132:::To prove every odd-order Dyck path can be written in the form of some path in the right column, ...Dyck path is a staircase walk from bottom left, i.e., (n-1, 0) to top right, i.e., (0, n-1) that lies above the diagonal cells (or cells on line from bottom left to top right). The task is to count the number of Dyck Paths from (n-1, 0) to (0, n-1). Examples :$\begingroup$ This is related to a more general question already mentioned here : Lattice paths and Catalan Numbers, or slightly differently here How can I find the number of the shortest paths between two points on a 2D lattice grid?. This is called a Dyck path. It's a very nice combinatorics subject. $\endgroup$ –Dyck paths with a constrained first return decomposition were introduced in [4] where the authors present both enumerative results using generating functions and a constructive bijection with the set of Motzkin paths. In [5], a similar study has been conducted for Motzkin, 2-colored Motzkin, Schröder and Riordan paths.Then we move to skew Dyck paths [2]. They are like Dyck paths, but allow for an extra step (−1,−1), provided that the path does not intersect itself. An equivalent model, defined and described using a bijection, is from [2]: Marked ordered trees. They are like ordered trees, with an additional feature, namely each rightmost edge (exceptWe relate the combinatorics of periodic generalized Dyck and Motzkin paths to the cluster coefficients of particles obeying generalized exclusion statistics, and obtain explicit expressions for the counting of paths with a fixed number of steps of each kind at each vertical coordinate. A class of generalized compositions of the integer path length …A Dyck path of semilength n is a diagonal lattice path in the first quadrant with up steps u = 1, 1 , rises, and down steps = 1, −1 , falls, that starts at the origin (0, 0), ends at (2n, 0), and never passes below the x-axis. The Dyck path of semilength n we will call an n-Dyck path.Abstract. In this paper we study a subfamily of a classic lattice path, the Dyck paths, called restricted d-Dyck paths, in short d-Dyck. A valley of a Dyck path P is a local minimum of P ; if the difference between the heights of two consecutive valleys (from left to right) is at least d, we say that P is a restricted d-Dyck path. The area of a ...Dyck paths and we enumerate certain families of them. We note that signature Dyck paths were 3. de ned by Cellabos and Gonz alez D’Le on, but in general there are no known closed formulas enumerating these combinatorial objects [3]. Theorem 1.3.Rational Dyck paths and decompositions. Keiichi Shigechi. We study combinatorial properties of a rational Dyck path by decomposing it into a tuple of Dyck paths. The combinatorial models such as b -Stirling permutations, (b + 1) -ary trees, parenthesis presentations, and binary trees play central roles to establish a correspondence between the ...(n;n)-Labeled Dyck paths We can get an n n labeled Dyck pathby labeling the cells east of and adjacent to a north step of a Dyck path with numbers in (P). The set of n n labeled Dyck paths is denoted LD n. Weight of P 2LD n is tarea(P)qdinv(P)XP. + 2 3 3 5 4) 2 3 3 5 4 The construction of a labeled Dyck path with weight t5q3x 2x 2 3 x 4x 5. Dun ...Maurice Cherry pays it forward. The designer runs several projects that highlight black creators online, including designers, developers, bloggers, and podcasters. His design podcast Revision Path, which recently released its 250th episode,...Rational Dyck paths as colored regular Dyck paths. In this paper, we will follow the terminology used in [ 6] for the study of generalized Dyck words. We consider the alphabet U = { a, b } and assume the valuations h ( a) = β and h ( b) = − α for positive integers α and β with gcd ( α, β) = 1.Flórez and Rodríguez [12] find a formula for the total number of symmetric peaks over all Dyck paths of semilength n, as well as for the total number of asymmetric peaks. In [12, Sec. 2.2], they pose the more general problem of enumerating Dyck paths of semilength n with a given number of symmetric peaks. Our first result is a solution to ...The size (orsemilength) ofa Dyck path is its number ofupsteps and a Dyck path of size n is a Dyck n-path. The empty Dyck path (of size 0) is denoted ǫ. The number of Dyck n-paths is the Catalan number C n, sequence A000108 in OEIS . The height of a vertex in a Dyck path is its vertical height above ground level and the height of the path is theThe Dyck path triangulation is a triangulation of Δ n − 1 × Δ n − 1. Moreover, it is regular. We defer the proof of Theorem 4.1 to Proposition 5.2, Proposition 6.1. Remark 4.2. The Dyck path triangulation of Δ n − 1 × Δ n − 1 is a natural refinement of a coarse regular subdivision introduced by Gelfand, Kapranov and Zelevinsky in ...A Dyck Path is a series of up and down steps. The path will begin and end on the same level; and as the path moves from left to right it will rise and fall, never dipping below the …Have you started to learn more about nutrition recently? If so, you’ve likely heard some buzzwords about superfoods. Once you start down the superfood path, you’re almost certain to come across a beverage called kombucha.A Dyck path is a lattice path in the first quadrant of the x y -plane that starts at the origin and ends on the x -axis and has even length. This is composed of the same number of North-East ( X) and South-East ( Y) steps. A peak and a valley of a Dyck path are the subpaths X Y and Y X, respectively. A peak is symmetric if the valleys ...Apr 11, 2023 · Dyck path is a staircase walk from bottom left, i.e., (n-1, 0) to top right, i.e., (0, n-1) that lies above the diagonal cells (or cells on line from bottom left to top right). The task is to count the number of Dyck Paths from (n-1, 0) to (0, n-1). Examples : We relate the combinatorics of periodic generalized Dyck and Motzkin paths to the cluster coefficients of particles obeying generalized exclusion statistics, and obtain explicit expressions for the counting of paths with a fixed number of steps of each kind at each vertical coordinate. A class of generalized compositions of the integer path length …Dyck paths with a constrained first return decomposition were introduced in [4] where the authors present both enumerative results using generating functions and a constructive bijection with the set of Motzkin paths. In [5], a similar study has been conducted for Motzkin, 2-colored Motzkin, Schröder and Riordan paths.[Hag2008] ( 1, 2, 3, 4, 5) James Haglund. The q, t - Catalan Numbers and the Space of Diagonal Harmonics: With an Appendix on the Combinatorics of Macdonald Polynomials . University of Pennsylvania, Philadelphia - AMS, 2008, 167 pp. [ BK2001]Jan 18, 2020 · Dyck paths and standard Young tableaux (SYT) are two of the most central sets in combinatorics. Dyck paths of semilength n are perhaps the best-known family counted by the Catalan number \(C_n\), while SYT, beyond their beautiful definition, are one of the building blocks for the rich combinatorial landscape of symmetric functions. the k-Dyck paths and ordinary Dyck paths as special cases; ii) giving a geometric interpretation of the dinv statistic of a~k-Dyck path. Our bounce construction is inspired by Loehr’s construction and Xin-Zhang’s linear algorithm for inverting the sweep map on ~k-Dyck paths. Our dinv interpretation is inspired by Garsia-Xin’s visual proof ofFirst, I would like to number all the East step except(!) for the last one. Secondly, for each valley (that is, an East step that is followed by a North step), I would like to draw "lasers" which would be lines that are parallel to the diagonal and that stops once it reaches the Dyck path.Refinements of two identities on. -Dyck paths. For integers with and , an -Dyck path is a lattice path in the integer lattice using up steps and down steps that goes from the origin to the point and contains exactly up steps below the line . The classical Chung-Feller theorem says that the total number of -Dyck path is independent of and is ...Dyck paths that have exactly one return step are said to be primitive. A peak (valley)in a (partial) Dyck path is an occurrence of ud(du). By the levelof apeak (valley)we mean the level of the intersection point of its two steps. A pyramidin a (partial) Dyck path is a section of the form uhdh, a succession of h up steps followed immediately byBijections between bitstrings and lattice paths (left), and between Dyck paths and rooted trees (right) Full size image Rooted trees An (ordered) rooted tree is a tree with a specified root vertex, and the children of each …use modified versions of the classical bijection from Dyck paths to SYT of shape (n,n). (4) We give a new bijective proof (Prop. 3.1) that the number of Dyck paths of semilength n that avoid three consecutive up-steps equals the number of SYT with n boxes and at most 3 rows. In addition, this bijection maps Dyck paths with s singletons to SYT Napa Valley is renowned for its picturesque vineyards, world-class wines, and luxurious tasting experiences. While some wineries in this famous region may be well-known to wine enthusiasts, there are hidden gems waiting to be discovered off...[1] The Catalan numbers have the integral representations [2] [3] which immediately yields . This has a simple probabilistic interpretation. Consider a random walk on the integer line, starting at 0. Let -1 be a "trap" state, such that if the walker arrives at -1, it will remain there.A Dyck Path is a series of up and down steps. The path will begin and end on the same level; and as the path moves from left to right it will rise and fall, never dipping below the height it began on. You can see, in Figure 1, that paths with these limitations can begin to look like mountain ranges.When a fox crosses one’s path, it can signal that the person needs to open his or her eyes. It indicates that this person needs to pay attention to the situation in front of him or her.Rational Dyck paths and decompositions. Keiichi Shigechi. We study combinatorial properties of a rational Dyck path by decomposing it into a tuple of Dyck paths. The combinatorial models such as b -Stirling permutations, (b + 1) -ary trees, parenthesis presentations, and binary trees play central roles to establish a correspondence between the ...Dyck paths and standard Young tableaux (SYT) are two of the most central sets in combinatorics. Dyck paths of semilength n are perhaps the best-known family counted by the Catalan number Cn, while SYT, beyond their beautiful definition, are one of the building blocks for the rich combinatorial landscape of symmetric functions.Skew Dyck paths are a variation of Dyck paths, where additionally to steps (1, 1) and $$(1,-1)$$ ( 1 , - 1 ) a south–west step $$(-1,-1)$$ ( - 1 , - 1 ) is also allowed, provided that the path does not intersect itself. Replacing the south–west step by a red south–east step, we end up with decorated Dyck paths. We analyze partial versions of them where the path ends on a fixed level j ...Digital marketing can be an essential part of any business strategy, but it’s important that you advertise online in the right way. If you’re looking for different ways to advertise, these 10 ideas will get you started on the path to succes...Every Dyck path can be decomposed into “prime” Dyck paths by cutting it at each return to the x-axis: Moreover, a prime Dyck path consists of an up-step, followed by an arbitrary Dyck path, followed by a down step. It follows that if c(x) is the generating function for Dyck paths (i.e., the coefficient of xn in c(x) is the number of Dyck ...Abstract. A 2-binary tree is a binary rooted tree whose root is colored black and the other vertices are either black or white. We present several bijections concerning different types of 2-binary trees as well as other combinatorial structures such as ternary trees, non-crossing trees, Schroder paths, Motzkin paths and Dyck paths.A balanced n-path is a sequence of n Us and n Ds, represented as a path of upsteps (1;1) and downsteps (1; 1) from (0;0) to (2n;0), and a Dyck n-path is a balanced n-path that never drops below the x-axis (ground level). An ascent in a balanced path is a maximal sequence of contiguous upsteps. An ascent consisting of j upsteps contains j 1The number of Dyck paths of length 2n 2 n and height exactly k k Ask Question Asked 4 years, 9 months ago Modified 4 years, 9 months ago Viewed 2k times 8 In A080936 gives the number of Dyck …A hybrid binary tree is a complete binary tree where each internal node is labeled with 1 or 2, but with no left (1, 1)-edges. In this paper, we consider enumeration of the set of hybrid binary trees according to the number of internal nodes and some other combinatorial parameters. We present enumerative results by giving Riordan arrays, …The middle path of length \( 4 \) in paths 1 and 2, and the top half of the left peak of path 3, are the Dyck paths on stilts referred to in the proof above. This recurrence is useful because it can be used to prove that a sequence of numbers is the Catalan numbers. A Dyck path is a staircase walk from (0,0) to (n,n) that lies strictly below (but may touch) the diagonal y=x. The number of Dyck paths of order n is given by the Catalan number C_n=1/ (n+1) (2n; n), i.e., 1, 2, 5, 14, 42, 132, ...A Dyck path is called restricted [Formula: see text]-Dyck if the difference between any two consecutive valleys is at least [Formula: see text] (right-hand side minus left-hand side) or if it has ...Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions. William Y.C. Chen, Sabrina X.M. Pang, Ellen X.Y. Qu, Richard P. Stanley. Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length and noncrossing partitions of with blocks.A {\em k-generalized Dyck path} of length n is a lattice path from (0, 0) to (n, 0) in the plane integer lattice Z ×Z consisting of horizontal-steps (k, 0) for a given integer k ≥ 0, up-steps (1, 1) , and down-steps (1, −1), which never passes below the x-axis. The present paper studies three kinds of statistics on k -generalized Dyck ...A Dyck path is a staircase walk from (0,0) to (n,n) that lies strictly below (but may touch) the diagonal y=x. The number of Dyck paths of order n is given by the Catalan number C_n=1/ (n+1) (2n; n), i.e., 1, 2, 5, 14, 42, 132, ...There is a very natural bijection of n-Kupisch series to Dyck paths from (0,0) to (2n-2,0) and probably the 2-Gorenstein algebras among them might give a new combinatorial interpretation of Motzkin paths as subpaths of Dyck paths.Why is the Dyck language/Dyck paths named after von Dyck? The Dyck language is defined as the language of balanced parenthesis expressions on the alphabet consisting of the symbols ( ( and )). For example, () () and ()(()()) () ( () ()) are both elements of the Dyck language, but ())( ()) ( is not. There is an obvious generalisation of the Dyck ...Napa Valley is renowned for its picturesque vineyards, world-class wines, and luxurious tasting experiences. While some wineries in this famous region may be well-known to wine enthusiasts, there are hidden gems waiting to be discovered off...Are you passionate about pursuing a career in law, but worried that you may not be able to get into a top law college through the Common Law Admission Test (CLAT)? Don’t fret. There are plenty of reputable law colleges that do not require C...Flórez and Rodríguez [12] find a formula for the total number of symmetric peaks over all Dyck paths of semilength n, as well as for the total number of asymmetric peaks.In [12, Sec. 2.2], they pose the more general problem of enumerating Dyck paths of semilength n with a given number of symmetric peaks. Our first result is a solution to …binomial transform. We then introduce an equivalence relation on the set of Dyck paths and some operations on them. We determine a formula for the cardinality of those equivalence classes, and use this information to obtain a combinatorial formula for the number of Dyck and Motzkin paths of a fixed length. 1 Introduction and preliminarieswhere Parkn is the set of parking functions of length n, viewed as vertically labelled Dyck paths, and Diagn is the set of diagonally labelled Dyck paths with 2n steps. There is a bijection ζ due to Haglund and Loehr (2005) that maps Parkn to Diagn and sends the bistatistic (dinv’,area) to (area’,bounce),In this paper, we study the enumeration of Dyck paths having a first return decomposition with special properties based on a height constraint. For future research, it would be interesting to investigate other statistics on Dyck paths such as number of peaks, valleys, zigzag or double rises, etc.Decompose this Dyck word into a sequence of ascents and prime Dyck paths. A Dyck word is prime if it is complete and has precisely one return - the final step. In particular, the empty Dyck path is not prime. Thus, the factorization is unique. This decomposition yields a sequence of odd length: the words with even indices consist of up steps ...An interesting case are e.g. Dyck paths below the slope $2/3$ (this corresponds to the so called Duchon's club model), for which we solve a conjecture related to the asymptotics of the area below ...We focus on the embedded Markov chain associated to the queueing process, and we show that the path of the Markov chain is a Dyck path of order N, that is, a staircase walk in N …Counting Dyck Paths A Dyck path of length 2n is a diagonal lattice path from (0;0) to (2n;0), consisting of n up-steps (along the vector (1;1)) and n down-steps (along the vector (1; 1)), such that the path never goes below the x-axis. We can denote a Dyck path by a word w 1:::w 2n consisting of n each of the letters D and U. The conditionA Dyck path is a staircase walk from (0,0) to (n,n) which never crosses (but may touch) the diagonal y=x. The number of staircase walks on a grid with m horizontal lines and n vertical lines is given by (m+n; m)=((m+n)!)/(m!n!) (Vilenkin 1971, Mohanty 1979, Narayana 1979, Finch 2003).Wn,k(x) = ∑m=0k wn,k,mxm, where wn,k,m counts the number of Dyck paths of semilength n with k occurrences of UD and m occurrences of UUD. They proposed two conjectures on the interlacing property of these polynomials, one of which states that {Wn,k(x)}n≥k is a Sturm sequence for any fixed k ≥ 1, and the other states that …Oct 12, 2023 · A Dyck path is a staircase walk from (0,0) to (n,n) that lies strictly below (but may touch) the diagonal y=x. The number of Dyck paths of order n is given by the Catalan number C_n=1/ (n+1) (2n; n), i.e., 1, 2, 5, 14, 42, 132, ... (OEIS A000108). The middle path of length \( 4 \) in paths 1 and 2, and the top half of the left peak of path 3, are the Dyck paths on stilts referred to in the proof above. This recurrence is useful because it can be used to prove that a sequence of numbers is the Catalan numbers. The notion of 2-Motzkin paths may have originated in the work of Delest and Viennot [6] and has been studied by others, including [1,9]. Let D n denote the set of Dyck paths of length 2n; it is well known that |D n |=C n .LetM n denote the set of Motzkin paths of length n, and let CM n denote the set of 2-Motzkin paths of length n. For a Dyck ...Restricted Dyck Paths on Valleys Sequence. Rigoberto Fl'orez T. Mansour J. L. Ram'irez Fabio A. Velandia Diego Villamizar. Mathematics. 2021. Abstract. In this paper we study a subfamily of a classic lattice path, the Dyck paths, called restricted d-Dyck paths, in short d-Dyck. A valley of a Dyck path P is a local minimum of P ; if the….Pairs of Noncrossing Free Dyck Paths and Noncrossing Partitions. William Y.C. Chen, Sabrina X.M. Pang, Ellen X.Y. Qu, Richard P. Stanley. Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length and noncrossing partitions of with blocks.Education is the foundation of success, and ensuring that students are placed in the appropriate grade level is crucial for their academic growth. One effective way to determine a student’s readiness for a particular grade is by taking adva...Decompose this Dyck word into a sequence of ascents and prime Dyck paths. A Dyck word is prime if it is complete and has precisely one return - the final step. In particular, the empty Dyck path is not prime. Thus, the factorization is unique. This decomposition yields a sequence of odd length: the words with even indices consist of up steps ...May 31, 2021 · Output: 2. “XY” and “XX” are the only possible DYCK words of length 2. Input: n = 5. Output: 42. Approach: Geometrical Interpretation: Its based upon the idea of DYCK PATH. The above diagrams represent DYCK PATHS from (0, 0) to (n, n). A DYCK PATH contains n horizontal line segments and n vertical line segments that doesn’t cross the ... The set of Dyck paths of length $2n$ inherits a lattice structure from a bijection with the set of noncrossing partitions with the usual partial order. In this paper, we study the joint distribution of two statistics for Dyck paths: \\emph{area} (the area under the path) and \\emph{rank} (the rank in the lattice). While area for Dyck paths has been …Dyck path is a staircase walk from bottom left, i.e., (n-1, 0) to top right, i.e., (0, n-1) that lies above the diagonal cells (or cells on line from bottom left to top right). The task is to count the number of Dyck Paths from (n-1, 0) to (0, n-1). Examples :Every Dyck path can be decomposed into “prime” Dyck paths by cutting it at each return to the x-axis: Moreover, a prime Dyck path consists of an up-step, followed by an arbitrary Dyck path, followed by a down step. It follows that if c(x) is the generating function for Dyck paths (i.e., the coefficient of xn in c(x) is the number of Dyck ...A Dyck path is called restrictedd d -Dyck if the difference between any two consecutive valleys is at least d d (right-hand side minus left-hand side) or if it has at most one valley. …A Dyck path is a path that starts and ends at the same height and lies weakly above this height. It is convenient to consider that the starting point of a Dyck path is the origin of a pair of axes; (see Fig. 1). The set of Dyck paths of semilength nis denoted by Dn, and we set D = S n≥0 Dn, where D0 = {ε} and εis the emptyBorn in Washington D.C. but raised in Charleston, South Carolina, Stephen Colbert is no stranger to the notion of humble beginnings. The youngest of 11 children, Colbert took his larger-than-life personality and put it to good use on televi.... Counting Dyck paths Catalan numbers The CIf you’re looking for a tattoo design that will inspire you, 1.0.1. Introduction. We will review the definition of a Dyck path, give some of the history of Dyck paths, and describe and construct examples of Dyck paths. In the second section we will show, using the description of a binary tree and the definition of a Dyck path, that there is a bijection between binary trees and Dyck paths. In the third ... Table 1. Decomposition of paths of D 4. Given a non-decrea A Dyck path of semilength is a lattice path starting at , ending at , and never going below the -axis, consisting of up steps and down steps . A return of a Dyck path is a down step ending on the -axis. A Dyck path is irreducible if it has only one return. An irreducible component of a Dyck path is a maximal irreducible Dyck subpath of .Consider a Dyck path of length 2n: It may dip back down to ground-level somwhere between the beginning and ending of the path, but this must happen after an even number of steps (after an odd number of steps, our elevation will be odd and thus non-zero). So let us count the Dyck paths that rst touch down after 2m The big Schroeder number is the number of Schro...

Continue Reading